Morning Ag Clips logo
  • Subscribe ❯
  • PORTAL ❯
  • LOGIN ❯
  • By Keyword
  • By topic
  • By state
  • Home
  • Events
  • Jobs
  • Store
  • Advertise
  • Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Subscribe to our
    daily email
    ❯
  • Portal Registration❯
  • Login❯
  • policy
  • tractors & machinery
  • education
  • conservation
  • webinars
  • business
  • dairy
  • cattle
  • poultry
  • swine
  • corn
  • soybeans
  • organic
  • specialty crops
  • Alabama
  • Alaska
  • Arizona
  • Arkansas
  • California
  • Colorado
  • Connecticut
  • Delaware
  • Florida
  • Georgia
  • Hawaii
  • Idaho
  • Illinois
  • Indiana
  • Iowa
  • Kansas
  • Kentucky
  • Louisiana
  • Maine
  • Maryland
  • Massachusetts
  • Michigan
  • Minnesota
  • Mississippi
  • Missouri
  • Montana
  • Nebraska
  • Nevada
  • New Hampshire
  • New Jersey
  • New Mexico
  • New York
  • North Carolina
  • North Dakota
  • Ohio
  • Oklahoma
  • Oregon
  • Pennsylvania
  • Rhode Island
  • South Carolina
  • South Dakota
  • Tennessee
  • Texas
  • Utah
  • Vermont
  • Virginia
  • Washington
  • West Virginia
  • Wisconsin
  • Wyoming

Morning Ag Clips

  • By Keyword
  • By topic
  • By state
  • policy
  • tractors & machinery
  • education
  • conservation
  • webinars
  • business
  • dairy
  • cattle
  • poultry
  • swine
  • corn
  • soybeans
  • organic
  • specialty crops
  • Home
  • Events
  • Jobs
  • Store
  • Advertise
Home » Plant scientists study the interaction of heat stress responses in corn
BEATING THE HEAT ... Comments

Plant scientists study the interaction of heat stress responses in corn

Two seemingly unrelated responses in corn plants interact to help the crop survive heat stress

PUBLISHED ON August 31, 2020

The Enviratron robotic collects data on plants. (ISU News Service)

AMES, Iowa — Environmental extremes driven by climate change create stresses in crops, and plant breeders are attempting to untangle the genetic factors that endow plants with tolerance to stress. A new study from Iowa State University scientists shows how two seemingly unrelated responses in corn plants interact to help the crop survive heat stress.

The study, published on Tuesday in the academic journal The Plant Cell, shows how a response called the unfolded protein response helps to activate the heat shock response when corn plants are exposed to hot weather conditions. The two responses operate in different parts of plant cells, and scientists previously assumed the responses were independent. But data gathered using the Enviratron, a highly controlled and automated facility at Iowa State equipped with a robotic rover and growth chambers, allowed the research team to show how one response influences another.

“These two systems have been thought to operate independently,” said Stephen Howell, Distinguished Professor of Genetics, Development and Cell Biology and senior author of the study. “We’ve been able to show these systems sometimes work together to mitigate damage caused by heat and to protect the plant from stress.”

Heat stress causes proteins to denature and misfold in the endoplasmic reticulum, an organelle inside cells. Misfolded proteins can be toxic, and their buildup sets off an alarm that activates the expression of genes that protects plants from heat stress. A similar response plays out in different locations of the cell, including the cytoplasm, where excessive heat activates the expression of a different set of genes encoding heat-shock proteins.

The new study shows that, although the two responses take place in different parts of the cell, they actually work in concert during heat stress: a powerful transcription factor produced in the unfolded protein response activates the expression of a key factor helping to trigger the heat shock response.

The scientists found that knocking out the unfolded protein response made corn plants more susceptible to heat stress and hindered the heat shock response. That raises the question if overexpressing the misfolded protein response could strengthen the ability of corn plants to withstand high heat, but Howell said doing so may have other undesirable consequences.

“There’s a seesaw balance, if you will, between defense and growth,” he said. “The more you contribute to defense, the more you sacrifice growth. It may be that you could provide somewhat greater defense to crops but you might do so at the expense of growth.”

In their study, the researchers drew on data gathered in the Enviratron, a state-of-the-art facility at the ISU Ag Engineering/Agronomy Research Farm that utilizes a robotic rover that travels through a series of specialized growth chambers that carefully control the environments in which the plants are raised. Development of the Enviratron was funded through a grant from the National Science Foundation. Zhaoxia Li, first author of the paper and a postdoctoral scientist in Howell’s lab, said the facility allows researchers to control variables such as temperature, moisture, light and carbon dioxide concentrations to study their effect on plant development.

Howell said previous scientific papers have described the design and construction of the Enviratron, but this is the first publication in a journal based on data generated in the facility.

“We hope that studies like this will emphasize the value of conducting such research under controlled environmental conditions offered by the Enviratron,” he said.

–Iowa State University
via EurekAlert!

For more articles concerning the corn industry, click here.

Click Here to find out more about your favorite topics

corn research soybeans

Spread the word

Browse More Clips

Special 2020 Big Tex Fair Food Drive-Thru Event

NMPF: Food-chain return to "normal" is slow, but it will happen

Primary Sidebar

MORE

ILLINOIS CLIPS

Dairy Girl Network announces 4th Annual Forward TogetHER Conference
May 16, 2022
World Dairy Expo seeks media interns for 2022 event
May 16, 2022
Prepare for summer with this week’s Dairy Signals
May 15, 2022
2022 ASI Photo Contest now accepting entries
May 15, 2022
USDA forecasts winter wheat production down in 2022
May 15, 2022
  • Trending
  • Latest

YOU MIGHT ALSO LIKE...

Researchers use AI to predict presence of woody breast in broilers
May 16, 2022
Trees aren’t a climate change cure-all
May 16, 2022
Why are my tomato leaves curling?
May 16, 2022
Redefining field edge to improve profitability, more
May 16, 2022
Farm couple confronts loss, aims to break mental health stigma
May 15, 2022

Footer

MORNING AG CLIPS

  • Sponsors
  • About Us
  • Advertise with Us
  • Privacy Statement
  • Terms of Service
  • Customer & Technical Support

CONNECT WITH US

  • Like Us on Facebook
  • Instagram
  • LinkedIn
  • Twitter
  • YouTube

TRACK YOUR TRADE

  • Markets & Economy
  • Cattle Updates
  • Dairy News
  • Policy & Politics
  • Corn Alerts

QUICK LINKS

  • Account
  • Portal Membership
  • Invite Your Friends
  • Subscribe to RSS
  • WeatherTrends
  • Just Me, Kate

© 2022 Morning Ag Clips, LLC. All Rights Reserved.