Morning Ag Clips logo
  • Subscribe ❯
  • PORTAL ❯
  • LOGIN ❯
  • By Keyword
  • By topic
  • By state
  • Home
  • Events
  • Jobs
  • Store
  • Advertise
  • Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Subscribe to our
    daily email
    ❯
  • Portal Registration❯
  • Login❯
  • policy
  • tractors & machinery
  • education
  • conservation
  • webinars
  • business
  • dairy
  • cattle
  • poultry
  • swine
  • corn
  • soybeans
  • organic
  • specialty crops
  • Alabama
  • Alaska
  • Arizona
  • Arkansas
  • California
  • Colorado
  • Connecticut
  • Delaware
  • Florida
  • Georgia
  • Hawaii
  • Idaho
  • Illinois
  • Indiana
  • Iowa
  • Kansas
  • Kentucky
  • Louisiana
  • Maine
  • Maryland
  • Massachusetts
  • Michigan
  • Minnesota
  • Mississippi
  • Missouri
  • Montana
  • Nebraska
  • Nevada
  • New Hampshire
  • New Jersey
  • New Mexico
  • New York
  • North Carolina
  • North Dakota
  • Ohio
  • Oklahoma
  • Oregon
  • Pennsylvania
  • Rhode Island
  • South Carolina
  • South Dakota
  • Tennessee
  • Texas
  • Utah
  • Vermont
  • Virginia
  • Washington
  • West Virginia
  • Wisconsin
  • Wyoming

Morning Ag Clips

  • By Keyword
  • By topic
  • By state
  • policy
  • tractors & machinery
  • education
  • conservation
  • webinars
  • business
  • dairy
  • cattle
  • poultry
  • swine
  • corn
  • soybeans
  • organic
  • specialty crops
  • Home
  • Events
  • Jobs
  • Store
  • Advertise
Home » How did this tomato virus become a global crop pandemic?
tomato genetics ... Comments

How did this tomato virus become a global crop pandemic?

"ToBRFV is the first virus that was able to overcome the durable Tm-22 resistance gene"

PUBLISHED ON November 3, 2021

A new viral tomato disease has emerged, threatening tomato production worldwide. (Photo by Davor Denkovski on Unsplash)

WASHINGTON — In the last years, a new viral tomato disease has emerged, threatening tomato production worldwide. This is caused by the Tomato brown rugose fruit virus (ToBRFV), a member of a devastating group of plant viruses called tobamoviruses. ToBRFV overcomes all known tobamovirus resistance in tomato, including the one conferred by Tm-22, a resistance gene responsible for the stable resistance to these viruses for more than 60 years. In a study recently published in the Molecular Plant-Microbe Interactions (MPMI), journal, Dr. Ziv Spiegelman and Dr. Hagit Hak explored the molecular mechanism by which this emerging virus was able to successfully break this resistance and become a devastating global crop pandemic.

“Tm-22 encodes a plant immune receptor protein, which recognizes a viral-encoded protein named movement protein, triggering an immune response against a wide range of tobamoviruses. ToBRFV is the first virus that was able to overcome the durable Tm-22 resistance gene,” said Spiegelman. “We found that the ToBRFV movement protein harbored sequence changes that allow it to evade Tm-22. We confirmed this by introducing this new sequence to another virus (the tomato mosaic virus) that normally cannot infect plants harboring Tm-22, which resulted in a virulent virus.”

Tomato plants (cv. Moneymaker) (upper panel) and leaves (lower panel) homozygous to the tm-2 or Tm-22 allele infected with ToMV and ToMVMP-ToBRFV. (Hagit Hak and Ziv Spiegelman)

Furthermore, they came up with an interesting observation from an evolutionary point of view. “Viral movement proteins allow the virus to spread from cell to cell and infect the entire plant. We found that the elements that enabled the movement protein to avoid Tm-22 recognition likely resulted in reduced viral movement. This suggests that the virus pays a penalty for evading host resistance, which is a reduced cell-to-cell transport. This finding may explain the high durability of Tm-22 resistance, which had remained unbroken for over half a century,” stated Spiegelman.

For more information about this study, read “The Tomato Brown Rugose Fruit Virus Movement Protein Overcomes Tm-22 Resistance in Tomato While Attenuating Viral Transport” in the MPMI journal.

–American Phytopathological Society
via EurekAlert!

Click Here to find out more about your favorite topics

research vegetables

Spread the word

Browse More Clips

Getting a solid soil response to biosolids application

ASA & NBB express concerns over supply chain (but not soy oil)

Primary Sidebar

MORE

NATIONAL CLIPS

Find local beef with this new online directory
August 15, 2022
USDA recommends adding food safety items to your back-to-school list
August 15, 2022
"We cannot wait for famine to be declared; we must act now"
August 15, 2022
U.S. soil judging team wins first place at World Congress of Soil Science
August 15, 2022
USDA invests nearly $8M to improve dietary health and nutrition security
August 15, 2022
  • Trending
  • Latest

YOU MIGHT ALSO LIKE...

Researchers seek ways to reduce deer populations in urban areas
August 15, 2022
dry beans
Winter rye provides benefits as a preceding cover crop for dry bean
August 15, 2022
UNF, partners awarded National Science Foundation grant to study seagrass health
August 15, 2022
Cornell AgriTech at 140: Growing a more resilient future
August 15, 2022
Citrus-destroying bacterial relative may also be infectious
August 15, 2022

Footer

MORNING AG CLIPS

  • Sponsors
  • About Us
  • Advertise with Us
  • Privacy Statement
  • Terms of Service
  • Customer & Technical Support

CONNECT WITH US

  • Like Us on Facebook
  • Instagram
  • LinkedIn
  • Twitter
  • YouTube

TRACK YOUR TRADE

  • Markets & Economy
  • Cattle Updates
  • Dairy News
  • Policy & Politics
  • Corn Alerts

QUICK LINKS

  • Account
  • Portal Membership
  • Invite Your Friends
  • Subscribe to RSS
  • WeatherTrends
  • Just Me, Kate

© 2022 Morning Ag Clips, LLC. All Rights Reserved.