Morning Ag Clips logo
  • Subscribe ❯
  • PORTAL ❯
  • LOGIN ❯
  • By Keyword
  • By topic
  • By state
  • Home
  • Events
  • Jobs
  • Store
  • Advertise
  • Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Subscribe to our
    daily email
    ❯
  • Portal Registration❯
  • Login❯
  • policy
  • tractors & machinery
  • education
  • conservation
  • webinars
  • business
  • dairy
  • cattle
  • poultry
  • swine
  • corn
  • soybeans
  • organic
  • specialty crops
  • Alabama
  • Alaska
  • Arizona
  • Arkansas
  • California
  • Colorado
  • Connecticut
  • Delaware
  • Florida
  • Georgia
  • Hawaii
  • Idaho
  • Illinois
  • Indiana
  • Iowa
  • Kansas
  • Kentucky
  • Louisiana
  • Maine
  • Maryland
  • Massachusetts
  • Michigan
  • Minnesota
  • Mississippi
  • Missouri
  • Montana
  • Nebraska
  • Nevada
  • New Hampshire
  • New Jersey
  • New Mexico
  • New York
  • North Carolina
  • North Dakota
  • Ohio
  • Oklahoma
  • Oregon
  • Pennsylvania
  • Rhode Island
  • South Carolina
  • South Dakota
  • Tennessee
  • Texas
  • Utah
  • Vermont
  • Virginia
  • Washington
  • West Virginia
  • Wisconsin
  • Wyoming

Morning Ag Clips

  • By Keyword
  • By topic
  • By state
  • policy
  • tractors & machinery
  • education
  • conservation
  • webinars
  • business
  • dairy
  • cattle
  • poultry
  • swine
  • corn
  • soybeans
  • organic
  • specialty crops
  • Home
  • Events
  • Jobs
  • Store
  • Advertise
Home » First-ever precision gene editing in miscanthus
education research sorghum specialty crops sustainability biofuels
BIOENERGY CROP ...

First-ever precision gene editing in miscanthus

Complex grass potential source for biofuels, renewable bioproducts, carbon sequestration

PUBLISHED ON January 24, 2023

miscanthus
miscanthus
HudsonAlpha researcher Kankshita Swaminathan and Illinois Crop Sciences Professor Erik Sacks, CABBI’s Deputy Theme Leaders for Feedstock Production, check out a field of miscanthus. (HudsonAlpha)

URBANA, Ill. — For the first time, researchers have successfully demonstrated precision gene editing in miscanthus, a promising perennial crop for sustainable bioenergy production.

A team at the Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), a Bioenergy Research Center (BRC) funded by the U. S. Department of Energy, edited the genomes of three miscanthus species using CRISPR/Cas9 — a far more targeted and efficient way to develop new varieties than prior methods.

The results will accelerate efforts to tap the huge potential of this highly productive but genetically complex grass as a source for biofuels, renewable bioproducts, and carbon sequestration. The study, published in Biotechnology for Biofuels and Bioproducts, was led by three CABBI miscanthus researchers at the HudsonAlpha Institute for Biotechnology in Alabama — Faculty Investigator Kankshita Swaminathan, Research Associate Anthony Trieu and former Postdoctoral Researcher Mohammad Belaffif — and Nancy Reichert, Professor of Biological Sciences at Mississippi State University.

Swaminathan co-led an international team that sequenced the miscanthus genome in 2020. That work provided a road map for researchers exploring new ways to maximize the plant’s productivity and decipher the genetic basis for its desirable traits. Miscanthus is extremely adaptable and easy to grow. It can thrive on marginal lands, requires limited fertilization, has a high tolerance for drought and cool temperatures, and uses the more efficient C4 form of photosynthesis.

To date, efforts to genetically improve miscanthus have focused on transforming plants by introducing external genes at random places in their genomes, rather than targeting specific sites or modifying existing genes.

The CABBI team developed gene-editing procedures using CRISPR/Cas9 that will allow researchers to selectively target existing genes within miscanthus plants to knock out, or modify, their function and introduce new genes into precise locations. That targeting ability presents a new avenue for genetic improvement of this important biomass crop.

The study demonstrated gene-editing in three species of miscanthus — the highly productive Miscanthus x giganteus, which is grown commercially for bioenergy, and its parents, M. sacchariflorus and M. sinensis. Because those plants are paleo-polyploids — with duplicated ancient sorghum-like DNA and multiple sets of chromosomes — the design of the guide RNAs that locate genetic material for editing needed to target all copies of a gene, to account for redundancy and ensure a full “knock out.”

The CABBI researchers built on similar gene editing in Zea mays (maize), which identified the lemon white 1 (lw1) gene as a helpful target for visual confirmation of genetic changes. That gene is involved in chlorophyll and carotenoid biosynthesis, which affects leaf color, and prior studies demonstrated that editing lw1 via CRISPR/Cas9 yielded pale green/yellow, striped, or white leaf phenotypes.

Using sequence information from both miscanthus and sorghum, researchers identified guide RNAs that could target homeologs, or duplicated gene copies, of lw1 in miscanthus plant tissue. The leaves on the edited miscanthus plants displayed the same phenotypes found in maize, with pale green/yellow, striped, or white leaves instead of the typical green.

The work enhances CABBI’s mission to develop sustainable production of bioenergy and to engineer select feedstocks (miscanthus, sorghum, and sugarcane) to produce novel bioproducts, such as oils and specialty chemicals. Prior to this study, the bioengineering work was limited to sorghum and cane because the methods for precise engineering in miscanthus had not been developed.

“Identifying transformable germplasm, developing reliable transformation methods, and demonstrating gene editing in miscanthus are all crucial steps toward pathway engineering in miscanthus,” Swaminathan said. “The ability to precisely edit miscanthus to enhance productivity, enable continued growth on marginal lands, and produce specialty chemicals such as oils will help remove the ‘potential’ from its status as a viable bioenergy crop.

“This research helps us move a few steps closer to reducing our reliance on petroleum-based energy.”

To identify miscanthus lines that transformed well, the researchers screened germplasm from commercial vendors and the study’s collaborators. Most of the lines were supplied by co-author Erik Sacks, Professor of Crop Sciences at the University of Illinois Urbana-Champaign, who has collected germplasm from around the globe. Sacks and Swaminathan are Deputy Theme Leaders for CABBI’s Feedstock Production research.

“This research project was a highly collaborative, multi-institutional effort with researchers working across disciplines to achieve an important goal. It reinforced the ‘big picture’ approach to research within CABBI, as well as in other BRCs,” Reichert said.

Other CABBI co-authors on the study included Steve Moose, Professor of Crop Sciences at Illinois; Tom Clemente, Eugene W. Price Distinguished Professor of Biotechnology at the University of Nebraska Center for Plant Science Innovation; Postdoctoral Researcher Pradeepa Hirannaiah, Technician Shilpa Manjunatha, Intern Rebekah Wood, and Workforce Development Specialist Yokshitha Bathula, all of HudsonAlpha; and Research Associate Rebecca Billingsley and Graduate Student Anjali Arpan of Mississippi State.

— Center for Advanced Bioenergy and Bioproducts Innovation

RECOMMENDED ARTICLES

Miscanthus
Powerful new dimension added for phenotyping miscanthus
November 07, 2022

URBANA, Ill. — Miscanthus is one of the most promising perennial crops for bioenergy production since it is able to produce high yields with a small environmental footprint. This versatile grass has great potential to perform even better, as much less effort has been put into improving it through breeding relative to established commodity crops […]

Bioenergy sorghum’s roots can replenish carbon in soil
December 22, 2021

COLLEGE STATION, Texas — The world faces an increasing amount of carbon dioxide in the atmosphere and a shortage of carbon in the soil. However, bioenergy sorghum can provide meaningful relief from both problems, according to a new study by Texas A&M AgriLife Research scientists. The study, “Bioenergy sorghum’s deep roots: A key to sustainable biomass […]

Research suggests flood-tolerant crops a better choice for farmed potholes in modeled weather scenarios
September 19, 2021

AMES, Iowa — Farmers who want to increase the productivity and economic performance of their farmed potholes should consider more flood-tolerant crops, such as miscanthus. Recent research by Iowa State University scientists found expected increases in weather variability, especially more intense, frequent rainfall in the spring, are likely to adversely impact crop yields in areas […]

Marginal land for bioenergy crops hard to come by
September 02, 2021

URBANA, Ill. — Land is the planet’s limiting resource. We need land for food, biofuel, feed, ecosystem services, and more. But all land is not equal. Concerns about diverting land under food/feed crops to biofuel feedstocks have led to interest in using marginal land to produce these dedicated bioenergy crops for advanced biofuels. Marginal land […]

Incentives could turn costs of biofuel mandates into environmental benefits
April 27, 2021

CHAMPAIGN, Ill. — New studies from the Center for Advanced Bioenergy and Bioproducts Innovation (CABBI) shed more light on the economic and environmental costs of mandates in the Renewable Fuels Standard (RFS), a federal program to expand the nation’s biofuels sector. Researchers said the studies indicate the need to adopt more targeted policies that value […]

Spread the word

Browse More Clips

soil soil health dirt (U.S. Department of Agriculture, Public Domain)

Soil calcium, magnesium and potassium

Grow your farm business with online courses

Primary Sidebar

MORE

ALABAMA CLIPS

miscanthus
First-ever precision gene editing in miscanthus
January 24, 2023
Tennessee RiverLine partners with UTIA
January 24, 2023
USDA researchers develop naturally fire-resistant cotton lines
January 19, 2023
USDA’s National Agricultural Statistics Service conducts hemp survey
January 18, 2023
Emily Wyonzek
The Cotton Board promotes Wyonzek to vice president of operations
January 18, 2023
  • Trending
  • Latest

YOU MIGHT ALSO LIKE...

National FFA Organization selected to participate in the Advancing Racial Equity Community of Practice initiative
January 27, 2023
Research Center for Farming Innovation
Wiebbecke to lead ISA’s Research Center for Farming Innovation
January 26, 2023
Focus on Forage
Focus on Forage webinar series in Feb/March
January 26, 2023
USDA NASS conducts hemp survey
January 26, 2023
Kentucky Department of Agriculture
Kentucky Ag Development Board approves projects
January 26, 2023

Footer

MORNING AG CLIPS

  • Contact Us
  • Sponsors
  • About Us
  • Advertise with Us
  • Privacy Statement
  • Terms of Service

CONNECT WITH US

  • Like Us on Facebook
  • Instagram
  • LinkedIn
  • Twitter
  • YouTube

TRACK YOUR TRADE

  • Markets & Economy
  • Cattle Updates
  • Dairy News
  • Policy & Politics
  • Corn Alerts

QUICK LINKS

  • Account
  • Portal Membership
  • Just Me, Kate
  • Farmhouse Communication

Get the MAC App Today!

Get it on Google Play
Download on the App Store

© 2023 Morning Ag Clips, LLC. All Rights Reserved.