Morning Ag Clips logo
  • Subscribe ❯
  • PORTAL ❯
  • LOGIN ❯
  • By Keyword
  • By topic
  • By state
  • Home
  • Events
  • Jobs
  • Store
  • Advertise
  • Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Subscribe to our
    daily email
    ❯
  • Portal Registration❯
  • Login❯
  • policy
  • tractors & machinery
  • education
  • conservation
  • webinars
  • business
  • dairy
  • cattle
  • poultry
  • swine
  • corn
  • soybeans
  • organic
  • specialty crops
  • Alabama
  • Alaska
  • Arizona
  • Arkansas
  • California
  • Colorado
  • Connecticut
  • Delaware
  • Florida
  • Georgia
  • Hawaii
  • Idaho
  • Illinois
  • Indiana
  • Iowa
  • Kansas
  • Kentucky
  • Louisiana
  • Maine
  • Maryland
  • Massachusetts
  • Michigan
  • Minnesota
  • Mississippi
  • Missouri
  • Montana
  • Nebraska
  • Nevada
  • New Hampshire
  • New Jersey
  • New Mexico
  • New York
  • North Carolina
  • North Dakota
  • Ohio
  • Oklahoma
  • Oregon
  • Pennsylvania
  • Rhode Island
  • South Carolina
  • South Dakota
  • Tennessee
  • Texas
  • Utah
  • Vermont
  • Virginia
  • Washington
  • West Virginia
  • Wisconsin
  • Wyoming

Morning Ag Clips

  • By Keyword
  • By topic
  • By state
  • policy
  • tractors & machinery
  • education
  • conservation
  • webinars
  • business
  • dairy
  • cattle
  • poultry
  • swine
  • corn
  • soybeans
  • organic
  • specialty crops
  • Home
  • Events
  • Jobs
  • Store
  • Advertise
Home » Advanced model, data equal better cover crop management
corn soybeans soil science water issues
ACHIEVING POSITIVES ...

Advanced model, data equal better cover crop management

Understanding how cover crops affect crops, environment

PUBLISHED ON September 21, 2021

New University of Illinois research integrates field data and advanced mathematical modeling to understand how cover crops affect soil water, nitrogen, and oxygen dynamics, and may compete with summer cash crops. (Courtesy Photo)

URBANA, Ill. — Cover crops are widely seen as one of the most promising conservation practices, improving soil health while also removing carbon from the atmosphere. But while the number of Midwestern farmers planting cover crops has increased markedly in recent years, 2017 USDA Census data show only about 5% have adopted the conservation practice. The reluctance of the other 95% may be due, in part, to a perception that cover crops require more effort and may also negatively affect summer cash crop yield.

New University of Illinois research integrates field data and advanced mathematical modeling to understand how cover crops affect soil water, nitrogen, and oxygen dynamics, and may compete with summer cash crops.

“Cover cropping requires management. Otherwise cover crops compete with corn and soybean and can cause some yield loss. With proper management, however, farmers could use the right cover crop types and find the optimal growth window to plant and terminate cover crops to achieve benefits and minimize negative impacts on cash crops,” says Kaiyu Guan, founding director of the Agroecosystem Sustainability Center, associate professor in the Department of Natural Resources and Environmental Sciences, and Blue Waters professor at the National Center for Supercomputing Applications at the University of Illinois. He is also senior author on a new paper published in Field Crops Research.

Guan’s insights are based on a sophisticated mathematical model validated by five years of experimental field data collected from multiple sites across Illinois by Maria Villamil, a co-author of the paper and professor in the Department of Crop Sciences at Illinois. The process-based model aims to identify the underlying drivers of cover crop effects on cash crop yield, including cover crop type; termination timing; and soil factors such as water, nitrogen, oxygen, and soil temperature.

“Process-based models validated with field data have multiple advantages compared to field experiments alone,” says Ziqi Qin, doctoral student working with Guan and lead author on the study. “Most field experiments only focus on final variables such as cash crop yield or cover crop biomass, and can take years to conduct.

“Process-based modeling methods can simulate intermediate variables that are difficult to measure in field experiments, such as processes taking place in the soil. Models validated with field-based measurements can help optimize cover crop decisions, such as cover crop types and planting and termination time, through scenario simulations.”

By incorporating intermediate factors, the model explained why cover crops interfere with cash crop yield. Essentially, the two types of crops compete for common resources in the soil, including water, nitrogen, and oxygen. But context matters and the impacts are species-specific.

Soybean yield was unaffected by either type of cover crop, probably because soybeans put their own nitrogen into the soil. For corn, competition for water is heightened in dry years, according to the model, and the later cover crops are terminated, the less nitrogen is available for cash crops.

When the model focused on cover crop type, it found non-legume species, such as annual ryegrass and cereal rye, reduced corn yield by 0.9 to 6.9%. However, the nitrogen-fixing legume hairy vetch didn’t impact corn yield under high-nitrogen conditions. These findings are consistent with field observations across the Midwest and worldwide, and Guan says that lends credibility to his Midwest-centric modeling study.

The model found termination timing can be just as important as species. Late termination of non-legume cover crops – just a day before planting – resulted in more corn yield loss than terminating a month ahead of planting.

But that’s less time for the cover crop to do its work.

“There is a tradeoff between cover crop benefit and cash crop yield. If we terminate earlier, the cover crop won’t affect cash crop yield as much, but it will accumulate less biomass and potentially take up less soil nitrogen. So we have to balance those two factors,” Villamil says.

The model also identified other factors that negatively impacted cash crops, including cooler soil temperatures under cover crop biomass and less soil oxygen availability.

“You have to understand the process, and that part has been missing from other research in this area,” Guan says. “For example, I don’t think people fully appreciate the impact of oxygen in the soil, which turned out to be an important factor in our model. And many of these factors change in context of weather, climate, and soil. All these are worth more systematic studies.”

Guan notes programs like the USDA’s Pandemic Cover Crop Program, which reduces crop insurance premiums for farmers who grow cover crops, may incentivize more of the 95% who don’t to get on board with the conservation practice.

“In addition, with the increase in the private carbon credit market, there could be an increase of cover crop adoption in a significant way. We probably will see a surge. So this makes this topic extremely relevant and important,” he says. “We’re here to tell farmers how the science works, and then properly guide them to gain the benefit of cover crops.”

The article, “Assessing the impacts of cover crops on maize and soybean yield in the U.S. Midwestern agroecosystems,” is published in Field Crops Research [DOI: 10.1016/j.fcr.2021.108264]. Additional Illinois co-authors include Wang Zhou, Bin Peng, Lowell Gentry, Andrew Margenot, German Bollero, and Ziyi Li. Zhenong Jin, University of Minnesota; Jinyun Tang, Lawrence Berkeley National Laboratory; and Robert Grant, University of Alberta are also co-authors.

Funding was provided by the Illinois Nutrient Research and Education Council, the National Science Foundation, USDA’s National Institute for Food and Agriculture, and the Foundation for Food and Agriculture Research.

The Agroecosystem Sustainability Center (ASC) aims to be a world-leading innovation powerhouse in advanced monitoring and modeling of agroecosystems to improve sustainability under climate change. ASC is jointly funded by the Institute for Sustainability, Energy and Environment (iSEE), the College of Agricultural, Consumer and Environmental Sciences (ACES), and the Office of the Vice Chancellor for Research and Innovation (OVCRI)at the University of Illinois. The Department of Natural Resources and Environmental Sciences is in the College of ACES.

— University of Illinois ACES

For more articles on cover crops, click here.

RECOMMENDED ARTICLES

When crops eat first
July 25, 2022

RALEIGH, N.C. — Synthetic nitrogen fertilizers have become so costly to farmers, the energy sector and the environment that everyone seems open to alternatives. But in today’s high production systems, driving profitable crop yield demands specific plant nitrogen levels. Farmers increasingly face the double dilemma of stomaching high fertilizer costs and the potentially high environmental […]

nitrogen fertilizer
How much spring nitrogen to apply?
June 15, 2022

URBANA, Ill. — With the rising cost of nitrogen fertilizer and its impacts on air and water quality, University of Illinois researchers want to help farmers make more informed fertilizer rate decisions. Their latest modeling effort aims to do that by examining the role of pre-growing season weather on soil nitrogen dynamics and end-of-season corn […]

Cover crops play important role in resilient agriculture
January 16, 2022

COLLEGE STATION, Texas — While cover crops benefits are proven, Texas A&M AgriLife scientists are finding one size does not fit all relating to their use in the semi-arid regions of the state. What works in the dry, sandy South Plains may not be applicable in the northern High Plains or Rolling Plains. Texas A&M AgriLife […]

Quantifying carbon budget & credit in agroecosystems
August 03, 2021

URBANA, Ill. — Carbon is everywhere. It’s in the atmosphere, in the oceans, in the soil, in our food, in our bodies. As the backbone of all organic molecules that make up life, carbon is a very accurate predictor of crop yields. And soil is the largest carbon pool on earth, playing an important role in […]

Myth-busting 8 common beliefs about cover crops
February 17, 2021

WASHINGTON — Myths surrounding cover crops typically fall into one of two camps. The first camp is that of detriment, with concerns about available moisture being sucked up in a drought prone area or fear that cash crop yields will be hurt. The second is misplaced expectations – placing cover crops on a pedestal as […]

Spread the word

Browse More Clips

Dakota Gardener: The amazing chemistry of fall colors

New Young Ag Professionals State Committee members

Primary Sidebar

MORE

FLORIDA CLIPS

Farm Bureau members shine at AFBF Convention in Puerto Rico
January 26, 2023
ASI elects new leadership at Annual Convention
January 26, 2023
beltway beef cattle podcast
PODCAST: What to expect at NCBA’s 125th Convention
January 26, 2023
forestry
FDACS announces $2.6 million available to landowners for protecting Fla. Land Program
January 25, 2023
UF/IFAS offers hemp informational sessions throughout 2023
January 25, 2023
  • Trending
  • Latest

YOU MIGHT ALSO LIKE...

Research Center for Farming Innovation
Wiebbecke to lead ISA’s Research Center for Farming Innovation
January 26, 2023
Focus on Forage
Focus on Forage webinar series in Feb/March
January 26, 2023
larger crop seeds
UK study could help fight food insecurity
January 26, 2023
IL conservation applications have Feb. 3 cutoff
January 26, 2023
Indiana Beef Cattle Association
Beef industry's best honored by IBCA
January 26, 2023

Footer

MORNING AG CLIPS

  • Contact Us
  • Sponsors
  • About Us
  • Advertise with Us
  • Privacy Statement
  • Terms of Service

CONNECT WITH US

  • Like Us on Facebook
  • Instagram
  • LinkedIn
  • Twitter
  • YouTube

TRACK YOUR TRADE

  • Markets & Economy
  • Cattle Updates
  • Dairy News
  • Policy & Politics
  • Corn Alerts

QUICK LINKS

  • Account
  • Portal Membership
  • Just Me, Kate
  • Farmhouse Communication

Get the MAC App Today!

Get it on Google Play
Download on the App Store

© 2023 Morning Ag Clips, LLC. All Rights Reserved.